ⓘ Cathedral Peak Granodiorite. The Cathedral Peak Granodiorite was named after its type locality, Cathedral Peak in Yosemite National Park, California. The granod ..

Cathedral Peak Granodiorite

ⓘ Cathedral Peak Granodiorite

The Cathedral Peak Granodiorite was named after its type locality, Cathedral Peak in Yosemite National Park, California. The granodiorite forms part of the Tuolumne Intrusive Suite, one of the four major intrusive suites within the Sierra Nevada. It has been assigned radiometric ages between 88 and 87 million years and therefore reached its cooling stage in the Coniacian.


1. Geographic situation

The Cathedral Peak Granodiorite forms part of the central eastern Sierra Nevada in California. It is exposed in glaciated outcrops from the upper Yosemite Valley into the high Sierra Divide. It covers large parts of Mariposa County and Tuolumne County and also touches Madera County and Mono County. At its northern end it includes Tower Peak and Matterhorn Peak, at 12.264 feet 3743 m its highest elevation. In its southwestern section rises the Cathedral Range with the 10.911 feet Cathedral Peak 3326 m above Tuolumne Meadows. California State Route 120 traverses the granodiorite in its southern half. Due to the block-faulting and tilting of the Sierra Nevada to the west its drainage system is oriented to the west and follows mainly southwesterly courses, especially in the northern section.

The shape of the intrusion is a drawn-out rectangle or ellipse oriented roughly in the NNW-SSE-direction. Its long dimension measures about 30 miles 48 km, its width hardly reaches 12 miles 19 km at the northern end. The surface area amounts to about 230 square miles 600 km 2, roughly half of the total area of the Tuolumne Intrusive Suite. The granodiorite completely engulfes the Johnson Granite Porphyry in the south. It is surrounded in the southeast, southwest and northwest by the Half Dome Granodiorite. In its central belt region it touches the Kuna Crest Granodiorite. In the north and northeast it comes into contact with weakly metamorphosed country rocks, mainly Paleozoic and Jurassic metavolcanics and metasediments.


2. Geological overview

The Cathedral Peak Granodiorite is the third and most important intrusive pulse of the Tuolumne Intrusive Suite. The intrusions of this magmatic suite were spaced out over quite a long period. They started in the Turonian at about 93.5 million years BP and lasted right to the beginning of the Santonian at 85.4 million years BP. Radiometric dating of the cooling ages of the Cathedral Peak Granodiorite yielded 88.1 ± 0.2 down to 87.0 ± 0.7 million years BP, i.e. Coniacian.

The Tuolumne Intrusive Suite is accompanied by other major intrusive complexes in the Sierra Nevada: the John Muir and Mount Whitney intrusive suites, both further south and the Sonora Plutonic Complex to the north. The surface area of these four complexes surpasses 970 square miles 2.500 km 2.

The Tuolumne Intrusive Suite was constructed over a long time span of 8.1 million years by the following magmatic pulses ordered by increasing age:

  • Cathedral Peak Granodiorite
  • Kuna Crest Granodiorite – quartz diorite and granodiorite
  • Johnson Granite Porphyry
  • Half Dome Granodiorite, further subdivided into a porphyritic and an equigranular facies

This magmatic sequence shows the following geochronological and geochemical trends:

  • a decrease in barium, strontium and light rare earth elements such as scandium.
  • a steady decrease in Al 2 O 3, TiO 2, FeO, MgO and CaO contents.
  • decreasing age from the margin to the center, with the marginal Kuna Crest Granodiorte being the oldest magmatic pulse and the central Johnson Granite Porphyry the youngest.
  • an increase in rubidium contents from rim to center.
  • an increase in silica and alkali contents from rim to center, the composition of the rocks changing from mafic/intermediate to more felsic compositions.

3. Petrological description

The immediately apparent trait of the grey-white Cathedral Peak Granodiorite is its porphyritic habit with very large megacrysts of alkali feldspar commonly reaching 10, occasionally even 20 centimeters. The grain size of the groundmass stays in the 5 millimeter range.


3.1. Petrological description Mineralogy

The Cathedral Peak Granodiorite is modally composed of the following minerals:

  • accessories such as allanite and zircon.
  • myrmekite in shear zone.
  • apatite – 0.3 volume percent. Prismatic crystals.
  • opaque ore minerals such as ilmenite and magnetite – 0.6 volume percent.
  • plagioclase – 47.5 volume percent. Present as subhedral to euhedral, tabular oligoclase with An 27–29. Shows normal zoning with calcium-rich cores and sodium-rich rims. Exhibits simple carlsbad and albite twinning. Grain size varies between 1 and 15 millimeters. Can be cataclastically broken and infiltrated/replaced by microcline in shear zone.
  • alkali feldspar – 20.9 volume percent. Present as blocky, perthitic orthoclase with Or 88. Phenocrysts with grain sizes up to 20 centimeters in length, normal range up to 10 centimeters, 2 centimeters wide. Exhibit carlsbad twinning. Grain size and abundance of the phenocrysts decreases inwards towards the Johnson Granite Porphyry. The megacrysts engulf poikilitically enclose other smaller minerals such as biotite, hornblende, plagioclase and alkali feldspar due to a rapid growth rate. Cracks have been filled with opaque minerals, bigger fractures are in-filled with groundmass material. The surface is fractured with irregular edges. Some grains show signs of secondary alteration to clay minerals. Alkali feldspar occurs interstitially also in the fine- to medium-grained groundmass.
  • biotite – 3.5 volume percent. Equidimensional and subhedral. Main mafic constituent. Shows strong brown pleochroism, occasionally with pleochroic halos.
  • titanite. Irregular fine-grained crystals. Can appear in euhedral habit.
  • hornblende – 0.8 volume percent.
  • quartz – 25.9 volume percent. Equidimensional subhedral crystals of medium grain size 10 millimeter.


3.2. Petrological description Chemical composition

The following analyses by Bateman & Chappell and an average value from 18 analyses by Burgess & Miller are meant to demonstrate the chemical composition of the Cathedral Peak Granodiorite:

Compared with an average granodiorite the Cathedral Peak Granodiorite has a much higher silica content, shows elevated alkali values and is therefore a member of the shoshonitic high-K series. The rock is metaluminous, rich in sodium and belongs to the intrusive, mantle source-derived I-type granitoids. It is a typical calc-alkaline rock from the root zone of an ancient volcanic arc and associated with a subduction-type environment.

The trace elements demonstrate an enrichment in barium and strontium, nickel and chromium on the other hand have very low concentrations. The light rare earth elements LREE are also elevated but without a europium anomaly.

Another source gives: Estimates from petrographic observation of average mineral proportion of non-layered rocks of Half Dome Granodiorite:


4. Structures

The Cathedral Peak Granodiorite reveals the following structures of magmatic origin:

  • Layering underlined by the accumulation of hornblende and biotite. Two magmatic foliations can be observed
  • a secondary ESE-WNW-striking foliation.
  • a major NNW-SSE-striking, steeply dipping foliation bearing a steep lineation.
  • Schlieren generally strike NNW-SSE N 157 – with local deviations up to 50 ° and show a fairly steep dip of about 60 ° to the ENE.
  • Microgranitoid inclusions are similar in their mineralogy to the host rock, yet contain a higher percentage of mafic minerals like hornblende and biotite. Phenocrysts are plagioclase and hornblende with a grain size of 5 to 8 millimeter. The inclusions are sometimes surrounded by up to 3 centimeter wide felsic rims. Their mode of occurrence is singular or in clusters without a preferred direction.
  • Aplites form one to three centimeter wide dykes. Their mineralogy is fine-grained and homogeneous. They cut through all other structures with mostly sharp contacts. Larger dykes can host pegmatitic cores of quartz, plagioclase and alkali feldspar. Smaller splaying dyke terminations can end in a diffuse fashion in the host rock.
  • Ladder dikes represent tubular, locally confined magmatic upwellings. These structures are sometimes displaced by later magmatic motions.
  • Displacements in the magmatic state which can affect schlieren, ladder dykes and also the homogeneous granodiorite. They are later healed by aplitic material and concentrations of alkali feldspar. Displacements in schlieren are flat-lying, obliquely sinistral and show top to the WSW motion.

Structures that imply tectonic movements are signs of cataclasis:

  • on groundmass minerals like quartz
  • along the edges of microcline phenocrysts
  • on magmatic plagioclases

Structures that strongly hint at later-stage metasomatic changes are:

  • myrmekite
  • substitution of primary plagioclase by microcline

Taken together all these structural phenomena reveal a very complex evolution of the Cathedral Peak Granodiorite showing the succession of magmatic, tectonic and metasomatic stages – and most likely their occasional synergy and interdependence.


5. Formation and origin

Originally petrologists favoured a single magma chamber model for the genesis of the Tuolumne Intrusive Suite which underwent fractional crystallization and successively produced the different rock types like the Cathedral Peak Granodiorite. This somewhat simplistic model is now being questioned as underlined by the following facts:

  • the extremely long activity of this magma chamber protracted over 8.1 million years.
  • inconsistencies in the distribution of the trace elements and in the initial isotope ratios of strontium and neodymium.

Isotope ratios favour the mixing of two magmas, one with mantle affinities and another one with more felsic compositions approaching the Johnson Granite Porphyry in composition.

Thermobarometric data document an intrusion depth of 6 kilometers and a crystallization temperature range between 750 and 660 °C.

Feldspars, hornblende, biotite and magnetite often show unmixing in the lower temperature subsolidus region.

The Cathedral Peak Granodiorite cannot always be clearly distinguished from the porphyritic Half Dome Granodiorite in the field, at some places it shows gradual merging over about a hundred meters and apophyses are observed branching into the Half Dome rocks. The geochemical parameters of the two granodiorites also overlap, differences are mainly textural. They form a continuum and therefore cannot be clearly separated as two distinctive intrusive pulses. The contact relationships with the Johnson Granite Porphyry are on the other hand sharp.

The origin of the microcline in shear zones poses another problem. M.D. Higgins favours the possibility of recrystallization based on Ostwald ripening via metasomatic fluids. L.G. Collins supports a metasomatic subsolidus growth potassium- and silica-metasomatism that has been initiated by ongoing tectonic cataclasis. To be fully effective this process is dependent on the cataclastic breaking-up of the original crystals as realized in a ductile shear zone along the eastern edge of the Cathedral Peak Granodiorite Gem Lake Shear Zone.

  • Half Dome Granodiorite and Cathedral Peak Granodiorite but is lowest in Kuna Crest granodiorite Kuna Crest granodiorite is tied to Kuna Peak also in
  • John Muir wrote in My first summer in the Sierra: The Cathedral Peak Granodiorite of Cathedral Peak is an intrusion into an area of older intrusive or
  • Half Dome Granodiorite Cathedral Peak Granodiorite El Capitan Granite Geology of the Yosemite area Kuna Crest Granodiorite Sentinel granodiorite Tuolumne
  • Granodiorite and Cathedral Peak Granite, , also, Kuna Crest Granodiorite Oldest to youngest rocks are Kuna Crest Granodiorite Half Dome Granodiorite
  • Cretaceous Period. Cathedral Peak Granodiorite Geology of the Yosemite area Half Dome Granodiorite Kuna Crest Granodiorite Sentinel granodiorite Tuolumne Intrusive
  • glaciers carving out the granite material also see Cathedral Peak Granodiorite The tops of the peaks in the range were above the level of the highest glaciation
  • Bridalveil Granodiorite Cathedral Peak Granodiorite El Capitan Granite Geology of the Yosemite area Granite of Rancheria Mountain Half Dome Granodiorite Johnson
  • 3 mi to 10 kilometres 6.2 mi deep magma chamber, made of Half Dome granodiorite of the Tuolumne batholith. Tuolumne batholith also, the Tuolumne Intrusive
  • a very strong form of granite, plus granodiorite see Cathedral Peak Granodiorite and Kuna Crest Granodiorite It has a tendency to exfoliation, which
  • further reading Cathedral Peak Granodiorite El Capitan Granite Half Dome Granodiorite Kuna Crest Granodiorite Sentinel granodiorite Kiver, Eugene P.
  • Bibliography of the Sierra Nevada Buffalo Soldiers park rangers Cathedral Peak Granodiorite Chinquapin, California Landslide of 1996 List of birds of Yosemite
  • between joints is controlled by the amount of silica in the granite and granodiorite rocks more silica tends to create a more resistant rock, resulting in
  • including Cathedral Rocks, Three Brothers, and El Capitan. The youngest Yosemite Valley pluton is the 87 - million - year - old Half Dome granodiorite which makes
  • meat and green melon rind The pink is due to large exposures of granodiorite cliffs, and the green is due to large swaths of conifer forests. However
  • unique biogeographic and ecological patterns. Some of the more prominent peaks of the range include Mount Strathbogie 1, 033 metres 3, 389 ft Mount

Users also searched:

Peak, Granodiorite, Cathedral, Cathedral Peak Granodiorite, cathedral peak granodiorite, cretaceous magmatism. cathedral peak granodiorite,


Encyclopedic dictionary


Yosemite National Park, California. Glacial moraines in Yosemite.

Porphyritic granodiorite from the Cretaceous of California, USA. public display, Tuolumne Meadows visitor center, Yosemite National Park,. Secrets Cracked in Yosemites Tuolumne Meadows Yahoo News. In particular, tabular fracture clusters TFCs are common in the Cathedral Peak Granodiorite in the Tuolumne Meadows area. TFCs are dense. Comps 5 11 Carleton College. PORPHYRITIC TEXTURE in Cathedral Peak Granodiorite, with potassium feldspar phenocrysts much larger than the other minerals in the rock matrix. Fig. 14.

New insights into the origin of ladder dikes: Implications for.

Cover photograph of arcuate schliere in Cathedral Peak Granodiorite in Yosemite National Park, CA. 42. 225 238. Patrick, R.R., and Howe,. Volume 6, Issue 1 Volume 6 Washington University in St. Louis. The Cathedral Peak Granodiorite, which forms the most voluminous part of the Tuolumne Batholith, typically consists of biotite granodiorite containing abundant​. Fracture controlled erodibility, great rock climbing EurekAlert. Furthermore, diffusion modelling of Ti concentration gradients in quartz crystals from the Cathedral Peak granodiorite Fig. 3 Extended Data Fig. Map Of Cathedral Peak Granodiorite Yosemite Timeline Free. Pluton: Cathedral Peak granodiorite, Sierra Nevada Batholith. Geological Society of London Special. Publication 304: 203 233. Coleman DS, Glazner AF 1997.

Geolex CathedralPeak publications.

Climber with atheistic leanings that church is Cathedral Peak, in Yosemite National. Parks high Cathedral. Peak granodiorite, characterized by large. Low temperature crystallization of granites and the implications for. El Capitan Granodiorite. 102 Ma. Cathedral Peak Granodiorite. 88 Ma. Geologic map of Yosemite National Park. Huber et al., 1987. Turtleback Dome. Construction, solidification and internal Semantic Scholar. The Cathedral Peak Granodiorite forms the largest pluton of the Tuolumne Intrusive Suite, extending long distances to the north and south of Tuolumne Meadows. Polonium Radiohalos Tuolumne Intrusive Suite, Yosemite Answers. And Chappell, 1979, the Half Dome Granodiorite, the Cathedral Peak. Granodiorite, and the Johnson Granite Porphyry Fig. 1. Kistler and.

Geochronologic evidence for incremental assembly of the Tuolumne.

This moraine contains large boulders of Cathedral Peak Granodiorite, clear evidence of glacial transport from Tuolumne Meadows via Tenaya Canyon or from. Cathedral Peak Granodiorite pedia. Megacrystic Cathedral Peak Granodiorite, Yosemite National Park, California. a Slightly weathered, glacially polished slab 800 m north of. Timing and magnitude of late Pleistocene and Holocene glaciations. A granodiorite is a gray and white rock similar to granite. The Cathedral Peak granodiorite was shattered and cracked about 85 million years.

41. K metasomatism of plagioclase to produce microcline.

Ladder dikes form within 10 m thick flows of crystal rich magma on a magma chamber floor. In the Cathedral Peak granodiorite flows are. Geologic map USGS Publications Repository. We left the Cathedral Peak Granodiorite about here and entered the Half Dome Granodiorite. This unit is the second unit of the Tuolumne Intrusive Series the. Feldspar Megacrysts as a Window into the Crystallization of Silicic. The Origin of K feldspar Megacrysts of the Cathedral Peak Granodiorite, California, Benjamin Gross. PDF Age Differences in Memory for Face Name. Lembert Dome: Lower Map Region. The Cathedral Peak Granodiorite Kcp contains blocky alkali feldspar megacrysts commonly 3 cm x 5 cm, with the size and abundance of the. GC5P6TK Half Dome and Cathedral Peak Granodiorites Geocaching. Cathedral Peak Granodiorite. Image Description: Megacrystic Yosemite National Park, California. Class: igneous. Rock Type: plutonic. Sample Name: HD01 58. Cathedral Peak Granodiorite, Yosemite National Park. Dome Granodiorite, the porphyritic facies of the Half. Dome Granodiorite, the Cathedral Peak Granodiorite, and the Johnson Granite Porphyry. Contacts between.

Cathedral Peak Granodiorite StraboSpot.

If the coarsening of K feldspar in the Cathedral Peak granodiorite continued until the rock was completely solid, then there should be only one. M 20 Lakes Basin 20090816 20 Lakes Basin 0301. Caption. Porphyritic texture in Cathedral Peak Granodiorite, with potassium feldspar phenocrysts much larger than the other minerals in the rock matrix.

Cathedral Peak Granodiorite Late Cretaceous, 86 88 Ma Yosemite.

Following guidance from the Centers for Disease Control and Prevention and state and local public health authorities, park operations continue. Granite Yosemite National Park U.S. National Park Service. The Origin of K feldspar Megacrysts of the Cathedral Peak Granodiorite, California, Benjamin Gross. PDF Age Differences in Memory for Face Name Следующая Войти Настройки.

Secrets Cracked in Yosemites Tuolumne Meadows NBC News.

One of the youngest, called the Cathedral Peak granodiorite, crosses through the Tuolumne Meadows region. A granodiorite is a gray and. Professional Development: Yosemite Field Institute Knowles. The Red Lake and Eagle Peak plutons are similar in age K Ar: 87 89 m.y. and range in composition from granodiorite to granite. The Red Lake pluton is the youngest intrusives of the Cathedral point between the pluton, the granodiorite. The Geologic Story of Yosemite National Park 1987, Rocks, the. Crystic Cathedral Peak granodiorite Bateman 1992 Kistler and Fleck 1994 Coleman et al. 2004, Matzel et al. 2005. The small central phase is the w87 Ma.

JOHN M BARTLEY Research Faculty Profile The University of.

Named for fact it composes Cathedral Peak and adjoining parts of Cathedral Named changed to Cathedral Peak Granodiorite because. Van Buer, N.J. and Miller, E.L., 2010, The Sahwave Batholith, NW. Construction, solidification and internal differentiation of a large felsic arc pluton: Cathedral Peak granodiorite, Sierra Nevada Batholith. File:Map of Cathedral Peak Gr media Commons. Residual stress induced failure mechanisms of three types of granodiorite, Cathedral Peak and Half Dome granodiorites, assuming a fracture toughness value. Cathedral Peak Granodiorite GigaPan. In the moraine at the river are exposed boulders of Cathedral Peak granite, Half Dome quartz monzonite, Sentinel granodiorite probably.

A Tale of Two Plutons: Petrographic and Mineralogic Constraints on.

The Cathedral Peak Granodiorite was named after its type locality, Cathedral Peak in Yosemite National Park, California. The granodiorite forms part of the Tuolumne Intrusive Suite, one of the four major intrusive suites within the Sierra Nevada. Yosemites Tuolumne Meadows: A Long standing Geological Puzzle. The Cathedral Peak granodiorite, and Cathedral Peak surrounds the Johnson Peak Leucogranite. Contacts between Cathedral Peak and. Full article: Textural coarsening in igneous rocks. A prime example is the Cathedral Peak Granodiorite, which has unusually large ​up to 3 inches long crystals of potassium feldspar that are. A disciples guide to enlightenment on cathedral peaks southeast. In situ micro drilling of K feldspar megacrysts from the Late Cretaceous Cathedral Peak Granodiorite of the Tuolumne Intrusive Suite, California.

Radiogeologic studies in the central part of the Sierra Nevada.

Granodiorite and quartz diorite with mafic mineral content of about. 30 percent and with abundant mafic inclusions. Eastern area. Cathedral Peak Granodiorite. Construction, solidification and internal GeoScienceWorld. Cathedral Peak Granodiorite. Its a chatter mark, lasting evidence from 20.000 years ago when this peak was 2.000 feet below the Tuolumne Icefields glacier. Roadside Geology of the Tuolumne Meadows Region of Yosemite. Contact! Heres a stunning contact between the Cathedral Peak Granodiorite and the Jurassic aged lakebeds that have been cooked and. California Division of Mines and Geology: Bulletin 182 Geologic. The two granodiorites present at this location are the Half Dome Granodiorite and the Cathedral Peak Granodiorite both part of the Tuolumne.

Cathedral Peak Granodiorite, Sierra Nevada Batholith, California: A.

The 88–85 Ma Cathedral Peak unit Fig. 1. 106 is mainly composed of medium ​grained granodiorite with up to 12 centimeter long. 107. Characteristics of internal contacts in the Tuolumne Batholith, central. The Cathedral Peak Granodiorite, which is the largest mapped unit of the TB. internal differentiation of a large felsic arc pluton: Cathedral Peak granodiorite,. Formation of Igneous Layering in Granodiorite by Gravity Flow: a. Fault development in the Cathedral Peak Granodiorite. Sierra Nevada batholith: Evidence for directional emplacement of the Johnson Granite. Geology question SuperTopo Rock Climbing Discussion Topic. Origin of megacrysts in granitoids by textural coarsening: a crystal size distribution CSD study of microcline in the Cathedral Peak Granodiorite, Sierra Nevada,. Causes of compositional diversity in a lobe of the Half Dome. Continuing on towards the top, we become grateful that the dome is made completely of Cathedral Peak Granodiorite, which has enough texture to walk on​.

Free and no ads
no need to download or install

Pino - logical board game which is based on tactics and strategy. In general this is a remix of chess, checkers and corners. The game develops imagination, concentration, teaches how to solve tasks, plan their own actions and of course to think logically. It does not matter how much pieces you have, the main thing is how they are placement!

online intellectual game →